Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Aging Ment Health ; : 1-17, 2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2288078

ABSTRACT

OBJECTIVE: The objectives of this systematic review and meta-analysis were to identify the characteristics of internet-based psychoeducational programs for caregivers of people living with dementia and to synthesise program effectiveness. METHOD: Five English databases and four Chinese databases were searched in June 2021 with no time limit applied. A narrative summary was performed to describe the characteristics of studies reviewed. Meta-analysis was applied to synthesise the pooled effects where data were available. RESULTS: A total of 14352 articles were identified from the database search and 19 were included in the final review. Interventions comprised educational, psychological, and behavioural training relevant to dementia care. Program duration ranged from 3 weeks to 12 months. Meta-analysis of 13 RCTs showed that internet-based psychoeducational programs had a significant effect on reducing caregivers' depressive symptoms (SMD -0.19; 95% CI -0.03 - 0.35) and stress (SMD -0.29; 95% CI -0.03 -0.54). However, these programs did not show an effect on quality of life, anxiety, burden or self-efficacy in caregivers. CONCLUSION: Internet-based psychoeducational programs can improve some aspects of caregivers' mental health and emotional wellbeing. The effects of programs on self-efficacy, anxiety, burden and quality of life for caregivers remain inconclusive.

2.
Life Sci Alliance ; 6(6)2023 06.
Article in English | MEDLINE | ID: covidwho-2282525

ABSTRACT

Povidone-iodine (PVP-I) inactivates a broad range of pathogens. Despite its widespread use over decades, the safety of PVP-I remains controversial. Its extended use in the current SARS-CoV-2 virus pandemic urges the need to clarify safety features of PVP-I on a cellular level. Our investigation in epithelial, mesothelial, endothelial, and innate immune cells revealed that the toxicity of PVP-I is caused by diatomic iodine (I2), which is rapidly released from PVP-I to fuel organic halogenation with fast first-order kinetics. Eukaryotic toxicity manifests at below clinically used concentrations with a threshold of 0.1% PVP-I (wt/vol), equalling 1 mM of total available I2 Above this threshold, membrane disruption, loss of mitochondrial membrane potential, and abolition of oxidative phosphorylation induce a rapid form of cell death we propose to term iodoptosis. Furthermore, PVP-I attacks lipid rafts, leading to the failure of tight junctions and thereby compromising the barrier functions of surface-lining cells. Thus, the therapeutic window of PVP-I is considerably narrower than commonly believed. Our findings urge the reappraisal of PVP-I in clinical practice to avert unwarranted toxicity whilst safeguarding its benefits.


Subject(s)
Anti-Infective Agents, Local , COVID-19 , Iodine , Humans , Povidone-Iodine/pharmacology , Povidone-Iodine/therapeutic use , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/therapeutic use , Iodine/pharmacology , SARS-CoV-2 , Cell Death
3.
Nano Res ; : 1-7, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2270751

ABSTRACT

Coronavirus disease 2019 (COVID-19) highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission. Here, we developed a one-pot hydrothermal method to prepare Si-FITC nanoparticles (NPs) for the fluorescent immunoassay of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N protein). The synthesis of Si-FITC NPs did not need post-modification, which addressed the issue of quantum yield reduction during the coupling reaction. Si-FITC NPs showed two distinct peaks, Si fluorescence at λ em = 385 nm and FITC fluorescence at λ em = 490 nm. In the presence of KMnO4, Si fluorescence was decreased and FITC fluorescence was enhanced. Briefly, in the presence of N protein, catalase (CAT)-linked secondary antibody/reporter antibody/N protein/capture antibody immunocomplexes were formed on microplates. Subsequently, hydrogen peroxide (H2O2) and Si-FITC NPs/KMnO4 were injected into the microplate together. The decomposition of H2O2 by CAT resulted in remaining of KMnO4, which changed the fluorescence intensity ratio of Si-FITC NPs. The fluorescence intensity ratio correlated significantly with the N protein concentration ranging from 0.02 to 50.00 ng/mL, and the detection limit was 0.003 ng/mL, which was more sensitive than the commercial ELISA kit with a detection limit of 0.057 ng/mL. The N protein concentration can be accurately determined in human serum. Furthermore, the COVID-19 and non-COVID-19 patients were distinguishable by this method. Therefore, the ratiometric fluorescent immunoassay can be used for SARS-CoV-2 infection diagnosis with a high sensitivity and selectivity. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR, HRXPS); stability investigation of Si-FITC NPs (photostability, pH stability, anti-interference ability); stability investigation of free FITC (pH value, KMnO4); quenching mechanism of KMnO4 (UV-vis absorption spectra, fluorescence lifetime decay curves); reaction condition optimization of biotin-CAT with H2O2 (pH value, temperature, time); detection of N protein using commercial ELISA Kit; selectivity investigation of assays for SARS-CoV-2 N protein detection; determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-5005-z.

4.
Stress Health ; 2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-2237516

ABSTRACT

We compared the anxiety levels in prisoners before and after the COVID-19 outbreak and analyzed the causes of the changes in anxiety. The first survey was conducted in October 2019 (T0), and the second was conducted in March 2020 (T1). Generalized anxiety disorder-7 (GAD-7), Patient Health Questionnaire-9, and Insomnia Severity Index scales were selected to assess the quality of emotion and sleep among prisoners (N = 803). Three subjective questions were asked to evaluate prisoners' personal feelings on the COVID-19. Paired Samples T-test, Binary, and Multivariate Logistic Stepwise Regression were used to analyze the data. GAD-7 scores decreased at T1 (p < 0.001). For the prisoners without anxiety at T0 (n = 480), GAD-7's mean value at T1 raised (p < 0.001), whereas the mean value decreased (p < 0.001) for the prisoners with anxiety at T0 (n = 323). For the prisoners without anxiety, shorter years of education (OR = 0.843), COVID-19 (OR = 4.936), severer depression at T1 (OR = 1.683), and severer insomnia at T1 (OR = 1.134) were associated with the new onset of anxiety. For the prisoners with anxiety, anxiety was alleviated in 71.2% and exacerbated in 10.5% at T1. For the alleviators, severer depression at T1 (OR = 0.667) and COVID-19 (OR = 0.258) were associated with anxiety unrelief; severer anxiety at T0 (OR = 1.343) was associated with anxiety alleviation. For the exacerbators, severer anxiety at T0 (OR = 0.517) was associated with anxiety unaggravation; severer depression at T1 (OR = 1.196), COVID-19 (OR = 22.882), and severer depression at T0 (OR = 1.181) were associated with anxiety exacerbation. At the outbreak of COVID-19, prisoners' anxiety was reduced. The main factor was the baseline anxiety levels. That may be related to prison management and the Downward Social Comparison.

5.
Viruses ; 15(2)2023 01 23.
Article in English | MEDLINE | ID: covidwho-2216957

ABSTRACT

The Omicron variant is currently ravaging the world, raising serious concern globally. Monitoring genomic variations and determining their influence on biological features are critical for tracing its ongoing transmission and facilitating effective measures. Based on large-scale sequences from different continents, this study found that: (i) The genetic diversity of Omicron is much lower than that of the Delta variant. Still, eight deletions (Del 1-8) and 1 insertion, as well as 130 SNPs, were detected on the Omicron genomes, with two deletions (Del 3 and 4) and 38 SNPs commonly detected on all continents and exhibiting high-occurring frequencies. (ii) Four groups of tightly linked SNPs (linkage I-IV) were detected, among which linkage I, containing 38 SNPs, with 6 located in the RBD, increased its occurring frequency remarkably over time. (iii) The third codons of the Omicron shouldered the most mutation pressures, while the second codons presented the least flexibility. (iv) Four major mutants with amino acid substitutions in the RBD were detected, and further structural analysis suggested that the substitutions did not alter the viral receptor binding ability greatly. It was inferred that though the Omicron genome harbored great changes in antigenicity and remarkable ability to evade immunity, it was immune-pressure selected. This study tracked mutational signatures of Omicron variant and the potential biological significance of the SNPs, and the linkages await further functional verification.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Mutation , Amino Acid Substitution
6.
Ann Surg Open ; 3(4): e207, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2190839

ABSTRACT

To compare liver cancer resectability rates before and during the COVID-19 pandemic. Background: Liver cancers usually present with nonspecific symptoms or are diagnosed through screening programs for at-risk patients, and early detection can improve patient outcomes. In 2020, the COVID-19 pandemic upended medical care across all specialties, but whether the pandemic was associated with delays in liver cancer diagnosis is not known. Methods: We performed a retrospective review of all patients evaluated at the Johns Hopkins Multidisciplinary Liver Cancer Clinic from January 2019 to June 2021 with a new diagnosis of suspected or confirmed hepatocellular carcinoma (HCC) or biliary tract cancer (BTC). Results: There were 456 liver cancer patients (258 HCC and 198 BTC). From January 2019 to March 2020 (pre-pandemic), the surgical resectability rate was 20%. The subsequent 6 months (early pandemic), the resectability rate decreased to 11%. Afterward from October 2020 to June 2021 (late pandemic), the resectability rate increased to 27%. The resectability rate early pandemic was significantly lower than that for pre-pandemic and later pandemic combined (11% lower; 95% confidence interval [CI], 2%-20%). There was no significant difference in resectability rates pre-pandemic and later pandemic (7% difference; 95% CI, -3% to 16%). In subgroup analyses, the early pandemic was associated with a larger impact in BTC resectability rates than HCC resectability rates. Time from BTC symptom onset until Multidisciplinary Liver Clinic evaluation increased by over 6 weeks early pandemic versus pre-pandemic (Hazard Ratio, 0.63; 95% CI, 0.44-0.91). Conclusions: During the early COVID-19 pandemic, we observed a drop in the percentage of patients presenting with curable liver cancers. This may reflect delays in liver cancer diagnosis and contribute to excess mortality related to the COVID-19 pandemic.

7.
Nano research ; : 1-7, 2022.
Article in English | EuropePMC | ID: covidwho-2046111

ABSTRACT

Coronavirus disease 2019 (COVID-19) highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission. Here, we developed a one-pot hydrothermal method to prepare Si-FITC nanoparticles (NPs) for the fluorescent immunoassay of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N protein). The synthesis of Si-FITC NPs did not need post-modification, which addressed the issue of quantum yield reduction during the coupling reaction. Si-FITC NPs showed two distinct peaks, Si fluorescence at λem = 385 nm and FITC fluorescence at λem = 490 nm. In the presence of KMnO4, Si fluorescence was decreased and FITC fluorescence was enhanced. Briefly, in the presence of N protein, catalase (CAT)-linked secondary antibody/reporter antibody/N protein/capture antibody immunocomplexes were formed on microplates. Subsequently, hydrogen peroxide (H2O2) and Si-FITC NPs/KMnO4 were injected into the microplate together. The decomposition of H2O2 by CAT resulted in remaining of KMnO4, which changed the fluorescence intensity ratio of Si-FITC NPs. The fluorescence intensity ratio correlated significantly with the N protein concentration ranging from 0.02 to 50.00 ng/mL, and the detection limit was 0.003 ng/mL, which was more sensitive than the commercial ELISA kit with a detection limit of 0.057 ng/mL. The N protein concentration can be accurately determined in human serum. Furthermore, the COVID-19 and non-COVID-19 patients were distinguishable by this method. Therefore, the ratiometric fluorescent immunoassay can be used for SARS-CoV-2 infection diagnosis with a high sensitivity and selectivity. Electronic Supplementary Material Supplementary material (characterization of Si-FITC NPs (FTIR, HRXPS);stability investigation of Si-FITC NPs (photostability, pH stability, anti-interference ability);stability investigation of free FITC (pH value, KMnO4);quenching mechanism of KMnO4 (UV-vis absorption spectra, fluorescence lifetime decay curves);reaction condition optimization of biotin-CAT with H2O2 (pH value, temperature, time);detection of N protein using commercial ELISA Kit;selectivity investigation of assays for SARS-CoV-2 N protein detection;determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-5005-z.

8.
Front Med (Lausanne) ; 9: 907727, 2022.
Article in English | MEDLINE | ID: covidwho-2043474

ABSTRACT

Background: We use longitudinal chest CT images to explore the effect of steroids therapy in COVID-19 pneumonia which caused pulmonary lesion progression. Materials and Methods: We retrospectively enrolled 78 patients with severe to critical COVID-19 pneumonia, among which 25 patients (32.1%) who received steroid therapy. Patients were further divided into two groups with severe and significant-severe illness based on clinical symptoms. Serial longitudinal chest CT scans were performed for each patient. Lung tissue was segmented into the five lung lobes and mapped into the five pulmonary tissue type categories based on Hounsfield unit value. The volume changes of normal tissue and pneumonia fibrotic tissue in the entire lung and each five lung lobes were the primary outcomes. In addition, this study calculated the changing percentage of tissue volume relative to baseline value to directly demonstrate the disease progress. Results: Steroid therapy was associated with the decrease of pneumonia fibrotic tissue (PFT) volume proportion. For example, after four CT cycles of treatment, the volume reduction percentage of PFT in the entire lung was -59.79[±12.4]% for the steroid-treated patients with severe illness, and its p-value was 0.000 compared to that (-27.54[±85.81]%) in non-steroid-treated ones. However, for the patient with a significant-severe illness, PFT reduction in steroid-treated patients was -41.92[±52.26]%, showing a 0.275 p-value compared to -37.18[±76.49]% in non-steroid-treated ones. The PFT evolution analysis in different lung lobes indicated consistent findings as well. Conclusion: Steroid therapy showed a positive effect on the COVID-19 recovery, and its effect was related to the disease severity.

9.
Eur J Immunol ; 52(10): 1640-1647, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1990446

ABSTRACT

There is an urgent need for animal models of coronavirus disease 2019 to study immunopathogenesis and test therapeutic intervenes. In this study, we showed that NOD/SCID IL2rg-/- (NSG) mice engrafted with human lung (HL) tissue (NSG-L mice) could be infected efficiently by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and that live virus capable of infecting Vero cells was found in the HL grafts and multiple organs from infected NSG-L mice. RNA-Sequencing identified a series of differentially expressed genes, which are enriched in viral defense responses, chemotaxis, IFN stimulation and pulmonary fibrosis, between HL grafts from infected and control NSG-L mice. Furthermore, when infected with SARS-CoV-2, humanized mice with both human immune system (HIS) and autologous HL grafts (HISL mice) had bodyweight loss and hemorrhage and immune cell infiltration in HL grafts, which were not observed in immunodeficient NSG-L mice, indicating the development of anti-viral immune responses in these mice. In support of this possibility, the infected HISL mice showed bodyweight recovery and lack of detectable live virus at the later time. These results demonstrate that NSG-L and HISL mice are susceptible to SARS-CoV-2 infection, offering a useful in vivo model for studying SARS-CoV-2 infection and the associated immune response and immunopathology, and testing anti-SARS-CoV-2 therapies.


Subject(s)
COVID-19 , Animals , Chlorocebus aethiops , Disease Models, Animal , Humans , Immunity , Lung , Mice , Mice, Inbred NOD , Mice, SCID , RNA , SARS-CoV-2 , Vero Cells
10.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1970507

ABSTRACT

Background We use longitudinal chest CT images to explore the effect of steroids therapy in COVID-19 pneumonia which caused pulmonary lesion progression. Materials and Methods We retrospectively enrolled 78 patients with severe to critical COVID-19 pneumonia, among which 25 patients (32.1%) who received steroid therapy. Patients were further divided into two groups with severe and significant-severe illness based on clinical symptoms. Serial longitudinal chest CT scans were performed for each patient. Lung tissue was segmented into the five lung lobes and mapped into the five pulmonary tissue type categories based on Hounsfield unit value. The volume changes of normal tissue and pneumonia fibrotic tissue in the entire lung and each five lung lobes were the primary outcomes. In addition, this study calculated the changing percentage of tissue volume relative to baseline value to directly demonstrate the disease progress. Results Steroid therapy was associated with the decrease of pneumonia fibrotic tissue (PFT) volume proportion. For example, after four CT cycles of treatment, the volume reduction percentage of PFT in the entire lung was −59.79[±12.4]% for the steroid-treated patients with severe illness, and its p-value was 0.000 compared to that (−27.54[±85.81]%) in non-steroid-treated ones. However, for the patient with a significant-severe illness, PFT reduction in steroid-treated patients was −41.92[±52.26]%, showing a 0.275 p-value compared to −37.18[±76.49]% in non-steroid-treated ones. The PFT evolution analysis in different lung lobes indicated consistent findings as well. Conclusion Steroid therapy showed a positive effect on the COVID-19 recovery, and its effect was related to the disease severity.

11.
Respir Res ; 23(1): 105, 2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1875011

ABSTRACT

BACKGROUND: Quantitative computed tomography (QCT) analysis may serve as a tool for assessing the severity of coronavirus disease 2019 (COVID-19) and for monitoring its progress. The present study aimed to assess the association between steroid therapy and quantitative CT parameters in a longitudinal cohort with COVID-19. METHODS: Between February 7 and February 17, 2020, 72 patients with severe COVID-19 were retrospectively enrolled. All 300 chest CT scans from these patients were collected and classified into five stages according to the interval between hospital admission and follow-up CT scans: Stage 1 (at admission); Stage 2 (3-7 days); Stage 3 (8-14 days); Stage 4 (15-21 days); and Stage 5 (22-31 days). QCT was performed using a threshold-based quantitative analysis to segment the lung according to different Hounsfield unit (HU) intervals. The primary outcomes were changes in percentage of compromised lung volume (%CL, - 500 to 100 HU) at different stages. Multivariate Generalized Estimating Equations were performed after adjusting for potential confounders. RESULTS: Of 72 patients, 31 patients (43.1%) received steroid therapy. Steroid therapy was associated with a decrease in %CL (- 3.27% [95% CI, - 5.86 to - 0.68, P = 0.01]) after adjusting for duration and baseline %CL. Associations between steroid therapy and changes in %CL varied between different stages or baseline %CL (all interactions, P < 0.01). Steroid therapy was associated with decrease in %CL after stage 3 (all P < 0.05), but not at stage 2. Similarly, steroid therapy was associated with a more significant decrease in %CL in the high CL group (P < 0.05), but not in the low CL group. CONCLUSIONS: Steroid administration was independently associated with a decrease in %CL, with interaction by duration or disease severity in a longitudinal cohort. The quantitative CT parameters, particularly compromised lung volume, may provide a useful tool to monitor COVID-19 progression during the treatment process. Trial registration Clinicaltrials.gov, NCT04953247. Registered July 7, 2021, https://clinicaltrials.gov/ct2/show/NCT04953247.


Subject(s)
COVID-19 Drug Treatment , Humans , Lung/diagnostic imaging , Lung Volume Measurements/methods , Retrospective Studies , Steroids/therapeutic use
12.
Curr Probl Diagn Radiol ; 51(5): 675-679, 2022.
Article in English | MEDLINE | ID: covidwho-1868092

ABSTRACT

The unprecedented impact of the Sars-CoV-2 pandemic (COVID-19) has strained the healthcare system worldwide. The impact is even more profound on diseases requiring timely complex multidisciplinary care such as pancreatic cancer. Multidisciplinary care teams have been affected significantly in multiple ways as healthcare teams collectively acclimate to significant space limitations and shortages of personnel and supplies. As a result, many patients are now receiving suboptimal remote imaging for diagnosis, staging, and surgical planning for pancreatic cancer. In addition, the lack of face-to-face interactions between the physician and patient and between multidisciplinary teams has challenged patient safety, research investigations, and house staff education. In this study, we discuss how the COVID-19 pandemic has transformed our high-volume pancreatic multidisciplinary clinic, the unique challenges faced, as well as the potential benefits that have arisen out of this situation. We also reflect on its implications for the future during and beyond the pandemic as we anticipate a hybrid model that includes a component of virtual multidisciplinary clinics as a means to provide accessible world-class healthcare for patients who require complex oncologic management.


Subject(s)
COVID-19 , Pancreatic Neoplasms , Delivery of Health Care , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Pandemics , SARS-CoV-2
13.
Evolutionary bioinformatics online ; 16, 2020.
Article in English | EuropePMC | ID: covidwho-1679280

ABSTRACT

Monitoring the mutation and evolution of the virus is important for tracing its ongoing transmission and facilitating effective vaccine development. A total of 342 complete genomic sequences of SARS-CoV-2 were analyzed in this study. Compared to the reference genome reported in December 2019, 465 mutations were found, among which, 347 occurred in only 1 sequence, while 26 occurred in more than 5 sequences. For these 26 further identified as SNPs, 14 were closely linked and were grouped into 5 profiles. Phylogenetic analysis revealed the sequences formed 2 major groups. Most of the sequences in late period (March and April) constituted the Cluster II, while the sequences before March in this study and the reported S/L and A/B/C types in previous studies were all in Cluster I. The distributions of some mutations were specific geographically or temporally, the potential effect of which on the transmission and pathogenicity of SARS-CoV-2 deserves further evaluation and monitoring. Two mutations were found in the receptor-binding domain (RBD) but outside the receptor-binding motif (RBM), indicating that mutations may only have marginal biological effects but merit further attention. The observed novel sequence divergence is of great significance to the study of the transmission, pathogenicity, and development of an effective vaccine for SARS-CoV-2.

14.
Int J Antimicrob Agents ; 59(1): 106499, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587677

ABSTRACT

In a bid to contain the current COVID-19 (coronavirus disease 2019) pandemic, various countermeasures have been applied. To date, however, there is a lack of an effective drug for the treatment of COVID-19. Through molecular modelling studies, simeprevir, a protease inhibitor approved for the management of hepatitis C virus infection, has been predicted as a potential antiviral against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causative agent of COVID-19. Here we assessed the efficacy of simeprevir against SARS-CoV-2 both in vitro in Vero E6 cells and in vivo in a human angiotensin-converting enzyme 2 (hACE2) transgenic mouse model. The results showed that simeprevir could inhibit SARS-CoV-2 replication in Vero E6 cells with a half-maximal effective concentration (EC50) of 1.41 ± 0.12 µM. In a transgenic hACE2 mouse model of SARS-CoV-2 infection, intraperitoneal administration of simeprevir at 10 mg/kg/day for 3 consecutive days failed to suppress viral replication. These findings collectively imply that simeprevir does not inhibit SARS-CoV-2 in vivo and therefore do not support its application as a treatment against COVID-19 at a dosage of 10 mg/kg/day.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Simeprevir/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/therapeutic use , COVID-19/virology , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Transgenic , Negative Results , Protease Inhibitors/therapeutic use , Simeprevir/therapeutic use , Vero Cells , COVID-19 Drug Treatment
15.
Front Microbiol ; 12: 750725, 2021.
Article in English | MEDLINE | ID: covidwho-1485077

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been emerging and circulating globally since the start of the COVID-19 pandemic, of which B.1.617 lineage that was first reported in India at the end of 2020, soon became predominant. Tracing genomic variations and understanding their impact on the viral properties are the foundations for the vaccine and drug development and for the mitigation measures to be taken or lifted. In this study, 1,051 near-complete genomes and 1,559 spike (S) sequences belonging to the B.1.617 were analyzed. A genome-wide spread of single nucleotide polymorphisms (SNPs) was identified. Of the high frequency mutations identified, 61% (11/18) involved structural proteins, despite two third of the viral genome encoding nonstructural proteins. There were 22 positive selection sites, mostly distributed across the S protein, of which 16 were led by non-C to U transition and should be of a special attention. Haplotype network revealed that a large number of daughter haplotypes were continually derived throughout the pandemic, of which H177, H181 H219 and H286 from the ancestor haplotype H176 of B.1.617.2 were widely prevalent. Besides the well known substitutions of L452R, P681R and deletions of E156 and F157, as well as the potential biological significance, structural analysis in this study still indicated that new amino acid changes in B.1.617, such as E484Q and N501Y, had reshaped the viral bonding network, and increasingly sequenced N501Y mutant with a potential enhanced binding ability was detected in many other countries in the follow-up monitoring. Although we can't conclude the properties of all the mutants including N501Y thoroughly, it merits focusing on their spread epidemically and biologically.

16.
Sci Rep ; 11(1): 710, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1242036

ABSTRACT

Saliva omics has immense potential for non-invasive diagnostics, including monitoring very young or elderly populations, or individuals in remote locations. In this study, multiple saliva omics from an individual were monitored over three periods (100 timepoints) involving: (1) hourly sampling over 24 h without intervention, (2) hourly sampling over 24 h including immune system activation using the standard 23-valent pneumococcal polysaccharide vaccine, (3) daily sampling for 33 days profiling the post-vaccination response. At each timepoint total saliva transcriptome and proteome, and small RNA from salivary extracellular vesicles were profiled, including mRNA, miRNA, piRNA and bacterial RNA. The two 24-h periods were used in a paired analysis to remove daily variation and reveal vaccination responses. Over 18,000 omics longitudinal series had statistically significant temporal trends compared to a healthy baseline. Various immune response and regulation pathways were activated following vaccination, including interferon and cytokine signaling, and MHC antigen presentation. Immune response timeframes were concordant with innate and adaptive immunity development, and coincided with vaccination and reported fever. Overall, mRNA results appeared more specific and sensitive (timewise) to vaccination compared to other omics. The results suggest saliva omics can be consistently assessed for non-invasive personalized monitoring and immune response diagnostics.


Subject(s)
Pneumococcal Infections/immunology , Pneumococcal Vaccines/administration & dosage , Proteome/drug effects , Saliva/metabolism , Sinusitis/immunology , Streptococcus pneumoniae/immunology , Transcriptome/drug effects , Adult , Humans , Immunity , Longitudinal Studies , Male , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Saliva/drug effects , Sinusitis/drug therapy , Sinusitis/microbiology , Time Factors , Vaccination
17.
Sleep Breath ; 25(4): 2213-2219, 2021 12.
Article in English | MEDLINE | ID: covidwho-1146508

ABSTRACT

BACKGROUND: The outbreak of Coronavirus Disease-2019 (COVID-19) caused great psychological distress often with comorbid insomnia. Insomnia is common in patients with COVID-19 admitted to mobile cabin hospitals. Insomnia may lead to immune dysfunction, a condition not conducive to recovery from COVID-19. The use of sedative-hypnotic drugs is limited by their inhibitory effect on the respiratory system. A paucity of research is available regarding psychotherapy interventions to improve insomnia symptoms among  patients with COVID-19. In the general population, sleep problems are more common in women than in men; insomnia in women patients requires special attention. The aim of this study was to develop simplified-cognitive behavioral therapy for insomnia (S-CBTI) for patients with COVID-19 and comorbid insomnia symptoms and to verify its effectiveness through a self-control trial. A second aim was to compare the effectiveness of S-CBTI between acute and chronic insomnia among women with COVID-19 and comorbid insomnia symptoms in Wuhan Jianghan Cabin Hospital. METHODS: S-CBTI consisted of education on COVID-19 and sleep hygiene, stimulus control, sleep restriction, and self-suggestion relaxation training over a period of two consecutive weeks. Of 67 women, 66 completed psychological intervention and baseline and post-intervention assessments. There were 31 women with acute insomnia and 35 with chronic insomnia. The Insomnia Severity Index (ISI) score and self-compiled sleep data were assessed at baseline and post-intervention, and subjective sleep evaluations were assessed at days 4, 7, 12, and 14. RESULTS: The ISI score, sleep latency, night sleep time, and sleep efficiency were statistically significantlly improved from baseline to post-intervention by paired T-test. After the intervention, the mean ISI score of the acute insomnia group was lower than that of the chronic insomnia group. The reduction of the ISI score and the improvement of sleep time from baseline to post-intervention in the acute insomnia group were greater than those in the chronic insomnia group. Utilization of sedative-hypnotic drugs in the acute insomnia group was less than that in the chronic insomnia group, and the difference was statistically significant. CONCLUSIONS: S-CBTI can improve the insomnia symptoms of women with COVID-19 in mobile cabin hospitals, especially for stress-related acute insomnia.


Subject(s)
COVID-19/complications , Cognitive Behavioral Therapy , Outcome Assessment, Health Care , Sleep Initiation and Maintenance Disorders/etiology , Sleep Initiation and Maintenance Disorders/therapy , Acute Disease , Adolescent , Adult , China , Chronic Disease , Female , Humans , Middle Aged , Mobile Health Units , Patient Education as Topic , Relaxation Therapy , Severity of Illness Index , Young Adult
18.
J Infect Dis ; 223(1): 10-14, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1066339

ABSTRACT

Estimates of seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies have been hampered by inadequate assay sensitivity and specificity. Using an enzyme-linked immunosorbent assay-based approach that combines data about immunoglobulin G responses to both the nucleocapsid and spike receptor binding domain antigens, we show that excellent sensitivity and specificity can be achieved. We used this assay to assess the frequency of virus-specific antibodies in a cohort of elective surgery patients in Australia and estimated seroprevalence in Australia to be 0.28% (95% Confidence Interval, 0-1.15%). These data confirm the low level of transmission of SARS-CoV-2 in Australia before July 2020 and validate the specificity of our assay.


Subject(s)
Antibodies, Viral/analysis , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Seroepidemiologic Studies , Antigens, Viral/immunology , Australia , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoglobulin G/analysis , Phosphoproteins/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
19.
Front Med (Lausanne) ; 7: 613475, 2020.
Article in English | MEDLINE | ID: covidwho-1054987

ABSTRACT

Background and Aims: Angiotensin-converting enzyme II (ACE2) is the key molecule for understanding the pathophysiology of COVID-19. The risk of COVID-19 and impact of immunosuppressive treatment on disease course in patients with inflammatory bowel disease (IBD) remain controversial. We aimed to determine the change of intestinal ACE2 expression before and after biologics treatment including anti-tumor necrosis factor α (anti-TNFα), anti-integrin, and anti-interleukin (IL)12/23 in IBD patients. Methods: We analyzed the ACE2 expression through the public database of paired intestinal biopsies from IBD patients before and after biologic therapy. Change of ACE2 RNA and protein expression were validated in two independent cohorts (Birmingham cohort and Guangzhou cohort). The correlation between ACE2 expression and disease activity was also analyzed. Results: Mining information from the GEO database showed that compared with healthy control, intestinal ACE2 expression was downregulated in ileum of CD patients, while upregulated in colon of both CD and UC patients. Colonic ACE2 RNA expression was decreased significantly in patients responding to anti-TNFα but not anti-integrin and anti-IL12/23, which was validated in the Birmingham cohort. Using the Guangzhou cohort including 53 patients matched by pre- and post-anti-TNFα therapy, colonic ACE2 protein expression was significantly downregulated after anti-TNFα treatment in responders (P < 0.001) rather than non-responders. Colonic ACE2 expression was significantly higher in patients with severe histologically active disease compared with those with moderate (P < 0.0001) and mild (P = 0.0002) histologically active disease. Conclusion: Intestinal inflammation influences the expression of intestinal ACE2 in IBD patients, with different alterations in the ileum and colon. Colonic ACE2 expression was downregulated after anti-TNFα therapy in IBD patients responding to treatment. This might provide new clues regarding the risk of SARS-CoV-2 infection and the potential benefit of sustaining anti-TNFα treatment in patients with IBD.

20.
Front Med (Lausanne) ; 7: 576891, 2020.
Article in English | MEDLINE | ID: covidwho-983752

ABSTRACT

Background and Aims: The COVID-19 pandemic poses a great challenge to healthcare. We aimed to investigate the impact of COVID-19 on the healthcare of patients with inflammatory bowel disease (IBD) in epicenter and non-epicenter areas. Methods: Patients with IBD from Hubei province (the epicenter of COVID-19) and Guangdong province (a non-epicenter area), China were surveyed during the pandemic. The questionnaire included change of medications (steroids, immunomodulators, and biologics), procedures (lab tests, endoscopy, and elective surgery), and healthcare mode (standard healthcare vs. telemedicine) during 1 month before and after the outbreak of COVID-19. Results: In total, 324 IBD patients from Guangdong province (non-epicenter) and 149 from Hubei province (epicenter) completed the questionnaire with comparable demographic characteristics. Compared to patients in Guangdong province (non-epicenter), significantly more patients in Hubei (epicenter) had delayed lab tests/endoscopy procedures [61.1% (91/149) vs. 25.3% (82/324), p < 0.001], drug withdrawal [28.6% (43/149) vs. 9.3% (30/324), p < 0.001], delayed biologics infusions [60.4% (90/149) vs. 19.1% (62/324), p < 0.001], and postponed elective surgery [16.1% (24/149) vs. 3.7% (12/324), p < 0.001]. There was an increased use of telemedicine after the outbreak compared to before the outbreak in Hubei province [38.9% (58/149) vs. 15.4% (23/149), p < 0.001], while such a significant increase was not observed in Guangdong province [21.9% (71/324) vs. 18.8% (61/324), p = 0.38]. Approximately two-thirds of IBD patients from both sites agreed that telemedicine should be increasingly used in future medical care. Conclusions: Our patient-based survey study in a real-world setting showed that COVID-19 resulted in a great impact on the healthcare of patients with IBD, and such an impact was more obvious in the epicenter compared to the non-epicenter area of COVID-19. Telemedicine offers a good solution to counteract the challenges in an unprecedented situation such as COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL